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Magnetization in two-dimensional electron gas in a perpendicular magnetic field:
The roles of edge states and spin-orbit coupling
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We study the de Haas—van Alphen (dHvA) oscillations in the magnetization of a two-dimensional electron
gas under the influence of the edge states and/or the Rashba spin-orbit interaction (SOI). The boundaries of the
systems lift partially the degeneracies of Landau levels (LLs) and the resulting edge states lead to the changes
in both the center and the amplitude of the sawtoothlike magnetization oscillation. The SOI mixes the spin-up
and spin-down states of neighboring LLs into two unequally spaced energy branches. The inclusion of SOI
changes the well-defined sawtooth pattern of the dHVA oscillations in the magnetization. The weaker the
magnetic field is, the larger the change in the dHvA oscillations is due to the edge effect and/or the spin-orbit
coupling. Some theoretical results are compared with the experimental data.
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I. INTRODUCTION

The physics of two-dimensional electron gas (2DEG) in
the presence of a perpendicular magnetic field reveals a rich
variety of remarkable phenomena, for example, the integer
and fractional quantum Hall effects. Recently, the magneti-
zation property of 2DEG at low temperature and in a strong
perpendicular magnetic field has attracted extensive interest.
It is due to the fact that the magnetization is particularly
suited to investigate the electronic ground-state properties
and the density of states (DOS) of 2DEG by its minimal
perturbation to the system.! On the experimental side, the
measurement of the magnetization keeps a most challenging
task due to weak signal of the magnetization. A variety of
techniques, such as dc superconducting quantum interference
device magnetometers,”™ picking up coils lithographed
above the gate,® torque magnetometers,’~'? torsional magne-
tometer with optical angular detection,'*!> and microme-
chanical cantilever magnetometers,'®->? has been developed
to observe the magnetization oscillations, i.e., the de Haas—
van Alphen (dHvA) effect in high-mobility 2DEG. Clear
sawtooth dHVA oscillations in the magnetization have been
observed for Landau levels (LLs) of filling factors up to 52.'0
More recently, a novel method has been used by Prus et al.?®
and Shashkin er al.>* to measure the spin magnetization of
2DEQG in silicon metal-oxide-semiconductor field-effect tran-
sistors (MOSFETs). This method entails modulating the
magnetic field with an auxiliary coil and measuring the
imaginary (out-of-phase) component of the ac induced be-
tween the gate and the 2DEG system, which is proportional
to du/JB (where w is the chemical potential and B is the
magnetic field). Using the Maxwell relation, Jdu/dB=
—dM N, one can then obtain the magnetization M by in-
tegrating the induced current over the electron density, N.
Pauli spin susceptibility has been observed to behave criti-
cally near the 2D metal-insulator transition, in agreement
with previous transport measurements.>>2® With the similar
method, Anissimova et al?’ studied the thermodynamic
magnetization of a low-disordered strongly correlated 2DEG
in silicon MOSFETs in perpendicular and tilted magnetic
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fields. By measuring du/dB at noninteger filling factors, they
have directly determined the spectrum characteristics with-
out any fitting procedures or parameters.

On the theoretical side, extensive studies of dHVA oscil-
lations in the magnetization of 2DEG have also been carried
out.?8-3 In particular, Bremme et al.** investigated the influ-
ence of the edge current on the dHvVA oscillations in the
magnetization of a 2DEG using a spinless single-particle ap-
proach. Sharapov et al.3! extensively discussed the dHvA
oscillations of the magnetization in planar system with the
Dirac-like spectrum of quasiparticle excitation. In addition,
the magnetization oscillations as a function of the magnetic
field have also been theoretically studied in quantum dot
systems.3>3* However, to our knowledge there are no de-
tailed treatments of the influence of edge states and the spin-
orbit interaction (SOI) on the magnetization in 2D systems.
In this paper, we study systematically the thermodynamic
magnetization of a 2DEG system with edge states and SOI.
In particular, we address the effects of SOI and edge states
on the LL structure, the chemical potential, and the magne-
tization and its susceptibility to strong magnetic field. Quan-
tum oscillations in the magnetization of a 2DEG are well
known to be characterized by strictly (1/B)-periodic saw-
toothlike oscillations with an amplitude of 1ug (effective
Bohr magneton) (=efi/2m* with m* as the effective electron
mass) per electron. We will show that the picture changes for
the case in the presence of SOI and edge states. The degen-
eracy of LLs plays an important role in the formation of
dHvA oscillations. The edge states lift partially the degenera-
cies of Landau levels and lead to the change in both the
center and the amplitude of the sawtoothlike magnetization
oscillation. The SOI mixes the spin-up and spin-down states
of neighboring LLs into two unequally spaced energy
branches. The inclusion of SOI changes the well-defined
sawtooth behavior of the dHVA oscillations in the magneti-
zation. These results may be found useful in the character-
ization of magnetic oscillations in two-dimensional systems.

In Sec. II we review the exactly solvable cases of bulk
2DEG with or without Rashba SOI and numerically solvable
cases in the presence of both edge states and Rashba SOI. In
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Sec. III we present the results for the magnetization and the
effects of SOI and/or edge states. The results on the magnetic
susceptibility are presented in Sec. IV. Some concluding re-
marks are given in Sec. V.

II. ENERGY SPECTRUM FOR 2DEG

We consider a 2DEG with the Rashba coupling in the x-y
plane of an area L, X L, subject to a perpendicular magnetic
field B=Bz. The electrons are confined between 0 and L, in
the y direction by an infinite potential wall, and its wave
function is periodic along the x direction. We choose the
Landau gauge A=-ByX. The Hamiltonian for a single elec-
tron of spin 1/2 with a Rashba coupling is given by

7 A 1

Hy= J + %(on-y - Hyo-x) - EgSIu’BBo-Z + V(y), (1)
where m*, —e, and g, are the electron’s effective mass,
charge, and effective magnetic factor, respectively, wp is the
Bohr magneton, M= p+ eA/c is the kinetic operator, \ is the
Rashba coupling, and o, are the Pauli matrices. The last
term V(y) is the lateral confining potential: V(y)=0 for 0
=y=L, and infinite otherwise. Relevant quantities related to
the magnetic field are the cyclotron frequency w.=eB/m*
and the magnetic length /,= V#i/eB. The Rashba SOI in Eq.
(1) stems from the structural inversion asymmetry introduced
by a heterojunction or by surface or external fields. In semi-
conductors with narrower energy gap (InGaAs and AlGaAs),
this effect is expected to be stronger.> It has been shown
experimentally that the Rashba SOI can be modified up to
50% by external gate voltages.3¢37

Without considering the edge-state effect, the eigenener-
gies of a 2D spinless electron moving in a high perpendicular
magnetic field are LLs of the form3®

1
E=\n+-1|h 2
oo 8
and the corresponding eigenstates are

(v — 2,772
ke 0= 202, <y—yo)
L, ’

1
n,ky=-——k¢e -
VL, (Vw2 11,)"?

3)

where H,(x) is the Hermite polynomial and y,=[3k is the
center of the cyclotron orbit. The degeneracy N; of each
Landau level per spin is given by N;=2mS /l,z7 with S=L,L,
being the area of the sample. When the edge channels are
furthermore included but the SOI is excluded the eigenstate
is given by n,k,s):%eikx¢,1]),0(y)xs, where s=*1/2, x=1n

is the eigenstate of spin operator §, with eigenvalues *7%/2,
and ¢, , () obeys

2

Py

1
o T M 0y =30+ VO) (@000 = €70 @1, ()
(4)

This equation has been solved by MacDonald and Streda®
through properly applying the boundary condition. The re-
sulting eigenvalue spectrum of Eq. (4) has a form €,(y,)

PHYSICAL REVIEW B 79, 235327 (2009)

%
e 10
o

_ JJ
:

\

0

0

4 5 6

2 3 4 5 6 o 1 2 3
Y,(100nm)

¥,(100nm)

FIG. 1. The energy spectrum in units of meV versus the guiding
center y, (a) without and (b) with the Rashba spin-orbit couplings,
respectively. In both figures, the parameters are chosen as m*

=0.05m,, L=600 nm, B=1 T, and g,=4. The Rashba SOI strength
in (b) is set as A=15 meV nm.

=[Vn(y0)+%]hwc, where v,(y,) is numerically obtained by
requiring the wave function (pn,yo(y) to vanish at the bound-
ary y=0, L,. In this case, the spin-split LLs are given by

1
En,s(yO) = |: Vn(yO) + 5:| ﬁwc - SgsluBB’ (5)

which as an example is illustrated in Fig. 1(a) as a function
of the guiding center y,.

On the other side, when the Rashba SOI is included while
the edge-state effect is excluded, the spin-orbit coupling
mixes the two spin components. In this case, the energies of
the two branches of states (denoted by =*) are given by

E; =ho n+ (1 -g)*+8n7) (6)

for n=1, where we have defined g=g.m"/2m, and the effec-
tive (dimensionless) Rashba coupling n=\m*l,/#%. For n
=0, there is only one single state with the energy E;
=fiw.(1-g), which is the same as the lowest Landau level
without SOI. The corresponding eigenstates are given by

n,yo) ) )

i sin 6 [n—1,y0)

+
cos ¢,

n,yo, i>= (

for nZLJhere the parameters _0,:: are given by tan 49;:=
—u, =1+ with u,=(1-g)/\8n7. For n=0, the single
state is a product of the ground-state oscillator mode |0, k)
and eigenstate xi,, of §,. Thus it is interesting to see that the
ground state (n=0) has the fully polarized spin along the z
direction. In the excited states the spin is tilted with an ex-
pectation value of its z component, {o.)=cos’ 6, —sin’ 6,
that decreases as N and n increase. A prominent feature is
that the two branches of Landau levels E; and E,,, cross
each other at the values of 7 satisfying

V1 -g)?+8n7 +\(1-g)?+8(n+ )P =2. (8

This degenerate behavior in the energy spectrum has been
used to produce the resonant spin-Hall current.*04!
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When both the edge states and the Rashba SOI are in-
cluded, two interplayed mixing mechanisms occur. One is
from the coupling between different confining orbital modes
along the y direction; the other is the mixing of the eigen-
states x;,, and x_;, of the spin operator s,. As a result, the
wave function for final Hamiltonian (1) can be written in a
general form,*?

1 .
W, (x,y) = Te”‘xson(y)- )

V=

Here ¢,(y) are expanded in the basis of the infinite potential

well,
eu(y) = \/72 sm( )( m">, (10)

y m mn

with n being the Landau-level index and m being an integer.
The Schrédinger equation HyW,=E,(y,)V, leads to the fol-
lowing equations for the spinors:

[Ali - ]<b[ ) = 2 [Z(Flm + Glm)o-_ + i(Flm - (;lm)o-+

Amn
_Mlm]<b )’ (11)

where 0" =(0,*i0,)/2 and €,=E,/hw,. The other param-
eters in Eq. (11) are defined as

N2 1, \?
e B =4
2/ \L, 2

1 L 2 rm
M,, = 7(—£) f d6 sin(16)(6— 6,)* sin(mb),
e lb 0

29L. (7
Fy, =22 f 6 sin(16)(0— 6y)sin(m6),
1, ),

lbf" d
G=21—| dfsin(10)—sin(m¥), 12
In nLy . sin(/6) Msm(m) (12)

where 6y=yym/L,. We solve these equations in a truncated
Hilbert space disregarding the states with energies higher
than the cutoff energy. Typically we take a matrix Hamil-
tonian with dimension of a few hundreds. We increase the
size of the Hilbert space by a factor 2 and find no change in
the results presented below. In all cases the width of the
sample L, is taken large enough to have the cyclotron radius
r. smaller than L,/2. The right and left edge states are then
well separated in real space. A typical energy spectrum is
shown in Fig. 1(b). For yo=L,/2 the states are equal to the
bulk states except for exponential corrections. The wave
functions and the energy spectrum reproduce the above-
discussed bulk results without edge states. As y, approaches
the sample edge, the effect of the confining potential be-
comes important and it generates the k-dependent dispersion
of the energy levels,** which has profound effects on mag-
netotransport and magnetization properties.
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III. MAGNETIZATION OF 2DEG

We begin with a brief review of the standard derivation of
the 2DEG magnetization from the free energy. The magneti-
zation density is the derivative of the Helmholtz free energy
density with respect to B at fixed electron density N and
temperature T, M=—(JF/ dB) | 7. For the present model with
the LLs E, ((yo), the Helmholtz free energy density is given
by
L

1N y
F(B,T) = uN - ZED dyo > In{1 + PLrEnsOoly

= uN - /lg f dED(E,B)In{1 + ¢P#-E)}, (13)

where B=1/kpT, N,=N;/S, and w is the chemical potential.
Note that we have defined in the above equation the DOS per
area,

D(EB)=—— 3 AE-E, ()]

x™y nk,s

——E J dyod[E - E, (o)1, (14)

Vn?

where we have replaced k sum with 7= f dk and used the
relation yo—lbk The explicit 1nc1u31on of the DOS in the
expression can be utilized to take into account the impurity
effect, which broadens the LLs into Gaussian or Lorentzian
in shape. For simplicity we did not consider the broadening
effect in this paper. In the absence of edge states, the LLs
E, (yo) are uniform in space and thus Eq. (13) reduces to

> In{l + P Endy, (15)

n,s

F(B,T)= uN - N,

The B-dependent chemical potential u is connected to the
experimentally accessible electron density A via the local
DOS. In the clean sample limit this is written as

N__f dyOEfnv(yO) (16)

n,s

where fns()’o)=m is the Fermi distribution for the
spin-split LLs E, (vo). From Eq. (15) the magnetization den-
sity becomes

MZE{—NVJ %fm O)aEnY(yO)
n,s 0

e 1 dyo

—2n{1 + ePrEns0oly b = pp© 4 g
h [3 L,

(17)

One can see that the magnetization consists of two parts. The
first part M© is the conventional contribution from the B
dependence of the LLs and thus denotes a diamagnetic re-
sponse. The second part M") comes from the B dependence
of the level degeneracy factor N,, thus describing the effect
of the variation in the density of states upon the magnetic
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B(T)

FIG. 2. (Color online) Magnetic field dependence of (a) chemi-
cal potential w (thick line) and Landau levels (dashed line: spin
down; solid line: spin up) and (b) magnetization m (per electron) for
the 2DEG without edge states and spin-orbit coupling. The other
system parameters are N'=4.5X 1073/nm?, g,=4, m=0.05m,, for
the inversion heterostructure Ings3Gag47As/Ing5pAlg4gAs, and T
=35 K.

field and denoting a paramagnetic contribution to the total
magnetization. Obviously, M© is negative while MV is
positive, the net result is an oscillation of the total magneti-
zation M between the negative and positive values as a func-
tion of B. At zero temperature, the expression for M reduces
to a sum over all occupied LLs,

occu. L
v dyy IE
M= E _NVJ ﬂ n,s(yO)

o L, 3B

n,s

e (& dy,
- — -E s 18
+ h,f() Ly [/‘LO n,s(yO)] ( )

where the sum runs over all occupied states and u is the
zero-temperature chemical potential (Fermi energy).

For comparison, let us start from the conventional result
for the bulk 2DEG without SOI and edge-state effects. In this
case, both the chemical potential w [Fig. 2(a)] and the mag-
netization (per electron) m [Fig. 2(b)] display the well-
known sawtooth behavior with varying the magnetic field. At
zero temperature, the explanation of the dHvVA oscillation
can be given with the help of the filling factor v=A\/N,,
which measures the number of occupied LLs and is an inte-
ger when all the available states in the v lowest Landau
levels are filled. At these integer values the 2DEG is incom-
pressible and the chemical potential jumps discontinuously
between two adjacent LLs by an amount of Auy=fiw,
=2upB (ug=eB/2m"), which defines the incompressibility
gap. Note that the abrupt jump in the dHVA oscillation is on
the high magnetic field side of the sawtooth, which is special
for our present choice of the thermodynamic system. If the
system is constrained to have constant chemical potential,
then the jump in the dHVA oscillation will move to the low
magnetic field side of the sawtooth, which has been con-
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FIG. 3. (Color online) (a) The chemical potential x and (b) the
magnetization per electron m in units of wp in the sample with
edges as a function of the external magnetic field B. The Rashba
coupling A=0. The sample size L=600 nm. The other parameters
are the same as those in Fig. 2.

firmed by Meinel et al.* in an experiment with the electron
density A" modulated by applying a gate voltage to the
sample. The zero-temperature behavior of the magnetization
curve can be seen by Eq. (18), which in the absence of edge
states is

occu.

= ,f > (uo-2E,,). (19)

From above equation, one can easily derive a simplified
Maxwell relation AWMz%. Thus the discontinuous jump AM
is related to the discontinuity in the chemical potential Apu,
i.e., the Landau energy gap at even and the Zeeman gap at
odd filling factors, according to Au=AM - B. When the mag-
netic field increases within an odd filling factor v, the Fermi
energy mo and LLs also increase with B. As a result, the
magnetization also increases rapidly as a function of B, then
evolves a maximum at adjacent filling factor v—1, and sud-
denly jumps to a negative value. The zero-temperature mag-
netization jump at these even filling factors is given by the
above Maxwell relation, AM =2 uz, independent of the mag-
netic field and spin splitting. At finite temperature as shown
in Fig. 2 (T=3.5 K), the oscillation amplitude of the mag-
netization increases with increasing the magnetic field. This
fact is due to that the influence of finite temperature in this
case (i.e., no SOI and no edge states in the 2DEG) is merely
to reduce the oscillation amplitude and the discontinuities in
m and M via the smearing of the Fermi-Dirac distribution.
Another fact revealed in Fig. 2 is that the inclusion of the
Zeeman splitting in the LLs does not change the dHVA os-
cillation modes of the physical quantities. It is due to this
fact that the LLs are usually treated to be spin degenerate in
previous work.

Now let us see the edge-state effects on the magnetiza-
tion. Figure 3 shows the influence of the edge states on the
oscillations of chemical potential and magnetization (dHvVA
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FIG. 4. (Color online) The magnetization per electron m in units
of up in the sample with edges as a function of the external mag-
netic field B. The Rashba coupling A=0. The sample size L
=400 600 800 nm. The other parameters are the same as those in
Fig. 2.

oscillations) with magnetic field. The most prominent feature
brought by the edge states is that the center of the dHvA
oscillations is now dependent on the magnetic field. In par-
ticular, for the field less than 1 T, the oscillatory magnetiza-
tion is always positive in sign. Another feature shown in Fig.
4 is that the oscillation amplitude decreases with decreasing
the sample size. As is known, the origin of dHvA oscillations
is the degeneracy of Landau levels. The edge states with
dispersion lead to edge current which is not only crucial for
the quantum Hall effects but also very important for the
magnetization.>® The dispersion of the edge states partially
lifts the degeneracy of the Landau levels. Thus the edge
states tend to destroy the dHvA oscillations. Therefore it
leads to the decreasing in oscillation amplitude as shown in
Fig. 4. The upshift of the center of dHVA oscillations may be
understood in the following way. For the effects from the
edge states, what really matters is the ratio of two important
length scales: the magnetic length /,, and the system size L,.
The decreasing of L, is equivalent to the increasing in /,, i.e.,
decreasing in B or w,. As seen in Eq. (4), in the case with
smaller L, or weaker B, the second term becomes less im-
portant and the eigenenergy is less sensitive to the magnetic
field for states with y, near the edges. From Eq. (18), one
sees that the second term overcomes the first term and leads
to the upshift of the center of dHVA oscillations. The smaller
the system size is, the more profound effects the edge states
lead to, as seen in Fig. 4 for both the center and amplitude of
the dHVA oscillations. Figure 5(a) shows quantitatively the
system size dependence of the shift of the oscillation center.
It has the dependence 1/L,. Roughly, the contribution of the
edge states is proportional to the number of edge states [as
also seen from Eq. (18)], which is proportional to vr./L,,
where the cyclotron radius r.=\vl,,*> with the number of the

0.8
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FIG. 6. (Color online) (a) Red curve: the bulk contribution of
the magnetization m per electron (in units of wg); black curve: the
total magnetization per electron m (in units of wg). The Rashba
coupling A=0. (b) The ratio of edge-state contribution of magneti-
zation to the total magnetization. L=600 nm.

occupied Landau levels v~ 1//%. Thus the center of dHVA
oscillations is proportional to I,/L,=1/B?L,. The B and L,
dependences are clearly seen in Figs. 4 and 5. To see more
explicitly the contribution from edge states and bulk states,
we plot the total magnetization and the contribution from
bulk states in Fig. 6(a). The contribution from the edge states
is obtained from Eq. (17) by summing over terms from edge
states, with |yo| <r. or |[L—yo|<r.. The rest contribution is
from bulk states. There is no upshift of the magnetization
oscillation center for the part from bulk states. It shows ex-
plicitly that the upshift of the center of dHVA oscillations is
due to the existence of edge states. Figure 6(b) shows the
dependence of edge-state contribution on the magnetic field.
The contribution from edge states increases as decreasing the
magnetic field or equivalently decreasing the sample size as
one expects.

When the Rashba SOI is introduced, the filling factor v is
not linearly proportional to the inverse of the external field B
and there is an energy competition between the Zeeman cou-
pling and the Rashba coupling. Also, due to the entanglement
between the orbital and spin degrees of freedom, it is diffi-
cult to distinguish their separate contributions to the total
magnetization. These factors make the physical picture of the
dHvVA oscillations to change fundamentally, as shown in Fig.
7(a) for chemical potential x and Fig. 7(b) for magnetization
M as functions of B. One can see from these two figures that
the Rashba SOI has no visible influence on the magnetic
oscillations of the quantities n and M at large values of B,
where the Zeeman and spin-orbit coupling splitting are small
compared to the Landau-level splitting. At low magnetic

@ 08 0.6 »(b).\ -~ z'j / FIG. 5. (Color online) (a) The
0.6f =2 '\ \EE ' / dependence of the center of dHVA
. €03 ~,0.4¢ '\ 02 // oscillation on the size of the
Zoal - 2 L 00p ¢ sample. The magnetic field B is
E %8501 0z 03 0.2t \\ 00 03 06 09 | chosen around 1.2 T. (b) The B
1L(10%nm™) Na VBm) dependence of the center of dHVA
0.2 T~ 0.0f L=600nm e oscillations. In both figures the

3 6 5 10 1,2 1 2 3 7 5 Rashba SOI is neglected.

L(100nm) B(T)
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FIG. 7. (Color online) (a) The chemical potential u and (b) the
magnetization m (per electron) for the 2DEG under different tem-
peratures 7=3.5 and 1 K with Rashba spin-orbit interaction in the
absence of edge states. The Rashba coupling is taken to be \
=15 meV nm. The other parameters are same as those in Fig. 2.
The detailed oscillations of u and m at low magnetic fields are
illustrated in (c) and (d), respectively (solid lines), in comparison
with the case of A=0 (dotted lines).

field, however, the SOI modulation of the magnetic oscilla-
tions becomes obvious, which can be clearly seen by the
enlarged plots of w and M in Figs. 7(c) and 7(d), respec-
tively, for B less than 2.4 T. For comparison, we also replot
in Figs. 7(c) and 7(d) the cases without Rashba SOI. One can
see from these two figures that the SOI brings about two new
features at low magnetic field. (i) The sawtooth structure is
inversed, i.e., the locations of peaks in u and M with SOI
correspond to the valleys without SOI. This inversion is due
to the different LLs in the two cases. (ii) The oscillation
mode is prominently modulated by SOI and a beating pattern
appears. This beating behavior in the oscillations is due to
the fact that the LLs E; and E, are now unequally spaced
due to the presence of SOIL.

Another effect caused by the Rashba spin-orbit coupling
is that there are weak peaks appearing in the chemical po-
tential and the magnetization oscillation at low magnetic
field, as shown with the arrows in Fig. 7. In the 2DEG
sample without edges, the weak peaks will appear in the
magnetization once the temperature is sufficient low, for ex-
ample, 7=1 K. These weak peaks have been observed re-
cently by Schaapman et al.'* when they measured the mag-
netization of a dual-subband 2DEG, confined in a GaAs/
AlGaAs heterojection, and by Zhu et al'® when they
measured the magnetization of high-mobility 2DEG. These
peaks are so weak that they will disappear when the tempera-
ture is much higher.

Now let us see the SOI effect superposed on the edge-
state effect. Figures 8(a) and 8(b) show the chemical poten-
tial u and magnetization M, respectively, in the presence of
both SOI and edge states. One can see from these two figures
that at large values of B, where the Zeeman and spin-orbit
coupling splittings are small compared to the Landau-level
splitting, thus the Rashba SOI has no big influence on the
magnetic oscillations of the quantities u and M. Neither do
the edge states since the cyclotron radius is much smaller
than the system size. At low magnetic field, however, both
edge states and Rashba SOI change the pattern of dHVA
oscillations as clearly seen in Figs. 8(a) and 8(b) and the
enlarged plots of x and M in Figs. 8(c) and 8(d), respec-
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FIG. 8. (Color online) [(a) and (c)] The chemical potential u
and [(b) and (d)] the magnetization m (per electron in units of wup)
in the sample with edges as a function of the external magnetic field
B. The Rashba couplings [(a) and (b)] A=0 and [(c) and (d)] N\
=15 meV nm. In four figures, the sample size L=600 nm. The
temperature 7=3.5 K.

tively, for B less than 2.4 T. For comparison, we also replot
in Figs. 8(c) and 8(d) the cases without Rashba SOI. One can
see that the total effects are the superposition of effects from
both the edge states and Rashba SOI.

IV. MAGNETIC SUSCEPTIBILITY OF 2DEG
Now we turn to study the magnetic susceptibility x(B) for

the 2DEG. From Eq. (17), one obtains the expression for
x(B) as follows:

oM e L), dyo ( (9,LL aE‘n s‘(y()) )

== 12 20 = _p—ns Y
X( ) B = hJO Lyfns(yO) 9B 9B
v fL, dy, B ( IE, (o) )2
g L, E, - JdB
0 'y 4 COSth[ n,s(yO) ,U/]
2
PE,(vo)
+fns(y0) (9’32 & ’ (20)

which at zero temperature reduces to

occu. L
e [dyy[ Iy IE, (o)
x(B)= 2 ZJ L_0<<9BO_2 éBO
n,s 0 'y
Ly ay, PE, (vo)
y n,sy
et @
0 'y

For the ideal noninteracting 2DEG without the edge states,
the second term in Eq. (21) is zero due to the fact that both
the Landau and the Zeeman splittings of the energy spectrum
are linear in B. Thus in this case (zero temperature and no
edge states) the magnetic susceptibility is simply written as
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x(arb.unit)
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(b)
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FIG. 9. (Color online) The magnetic susceptibility y in the
sample (a) without and (b) with edges as a function of the inversed
magnetic field, 1/B. The black (real) line corresponds to the case of
the Rashba SOI strength A=0, while the red (dotted) line corre-
sponds to the case of A=15 meV nm. In both figures, the electron
density and the temperature are, respectively, set as ng=4.5
X 1073/nm? and T=3.5 K. The system size in (b) is L=600 nm.

occu. (9 &E v
B)=°S (ﬂ_2¢>'

22
e \oB " 9B @2)

Furthermore, if the SOI is disregarded, the derivative du,/ B
in quantizing magnetic fields (except at even integer filling
factors) is equal to

e ( I)Zme 1
-—= + = + g
JB MB n 2 m* 2gY

Then Eq. (22) clearly shows Landau diamagnetic (y<<0) at
Landau gaps and Pauli paramagnetic (y>0) responses at
Zeeman gaps.

Let us first see the SOI effect on the magnetic suscepti-
bility. Figure 9(a) shows x(B) as a function of 1/B for the
edgeless 2DEG. One can see from Fig. 9(a) that there is a
series of equal-distance resonance peaks appearing in the
magnetic susceptibility y with the magnetic field with or
without the Rashba coupling N\. With the magnetic filed in-
creasing, the magnitude of the resonance susceptibility in-
creases. Similar to that of the magnetization, the explanation
of the resonance peaks of the magnetic susceptibility without
Rashba coupling also needs the help of the filling factor v
~1/B. When v increases to an integer value, the 2DEG is
incompressible. At this time, all the available states in the v
lowest Landau levels are filled. Upon increasing the inverse
magnetic field 1/B, the electrons are transferred to the next
Landau level. Thus the chemical potential changes discon-
tinuously [see Fig. 2(a)] and the magnetization jumps [see
Fig. 2(b)]. Therefore there is a corresponding resonance peak

(23)
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appearing in the magnetic susceptibility y. When the Rashba
spin-orbit coupling is introduced, it will destroy the simply
linear relation between the filling factor v and the inverse
magnetic field 1/B. When the value of 1/B is larger, the SOI
effect is more evident [see the red line in Fig. 9(a)].

Figure 9(b) plots the magnetic susceptibility y in a 2DEG
sample with edges as a function of the inversed magnetic
field, 1/B. Comparing the black lines in Figs. 9(a) and 9(b),
which corresponding to the case without Rashba spin-orbit
coupling, one can find that the resonant (for magnetic sus-
ceptibility) magnetic field shifts to larger values for the case
with edges. We have obtained the conclusion that the edges
not only affect the center of the dHVA oscillation but also the
values of the magnetic field when the magnetization has the
discontinuous change. As a consequence, the conditions of
the susceptibility (defined as y=dM/dB) having resonance
are the same with those of the magnetization. When the
Rashba spin-orbit coupling is introduced, similar to the case
in the sample without edges, the Rashba coupling changes
the resonance condition. When the value of 1/B is much
larger, the change is much larger as seen in Fig. 9(b). Before
ending our discussion, we would like to point out that by
some experimental efforts, for example, increasing the den-
sity of electrons by doping or illumination, decreasing the
temperature, and adding the measurement with the inversed
magnetic field, it would be possible to observe our predic-
tions.

V. SUMMARY

In summary, we have systematically studied the dHVA
oscillations of the magnetization and its susceptibility for the
2DEG with the edge states and SOI included in the system.
We find that the edge states and Rashba SOI play important
roles when the external magnetic field is small. The edge
effect prominently changes the oscillation center and oscilla-
tion amplitude. The dHVA oscillation will change the saw-
toothlike form if the Rashba coupling is introduced, no mat-
ter the sample is with or without edges. The total effects are
the superposition of effects from both edge states and SOIL.
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